Найти число структур соответствующей сигнатуры на универсе из n элементов, в которых истинны следующие предложения: 1. ∀xR(x,x)
1. ∀x∃y∃zT(x,y,z)

задан 14 Дек '16 11:48

10|600 символов нужно символов осталось
0

Рефлексивных отношений на множестве можно задать $%2^{n^2-n}$%. Для трёхместного предиката мы при каждом фиксированном $%x$% могли бы задать $%2^{n^2}$% двуместных предикатов от $%y$%, $%z$%, но один из них не подходит -- тот, который всюду ложен. Получается $%2^{n^2}-1$% способ для каждого $%x$%, то есть всего будет $%(2^{n^2}-1)^n$% способов задать $%T$%. Итого получается $%2^{n^2-n}(2^{n^2}-1)^n$% структур.

ссылка

отвечен 14 Дек '16 17:43

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,068
×655
×99

задан
14 Дек '16 11:48

показан
257 раз

обновлен
14 Дек '16 17:43

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru