Запишите порядок выполняемых вами операций, оцените погрешности их результатов, вычислите и запишите искомое значение функции $%F(a,b,c)=(a^2b(1+b)sin(2c))/( c^{1/3} )$% при исходных данных $%a=0,12456( 0,0005), b=0,078( 0,00003), c=0,2468( 0,00013)$%.

задан 1 Янв '13 16:23

изменен 1 Янв '13 22:56

%D0%A5%D1%8D%D1%88%D0%9A%D0%BE%D0%B4's gravatar image


5525

10|600 символов нужно символов осталось
1

Для этого существует основная формула погрешностей: $$\Delta f\leq \max_{[x,x_n]}\left|\frac {\partial f} {\partial a}\right| + \max_{[x,x_n]}\left|\frac {\partial f} {\partial b}\right| + \max_{[x,x_n]}\left|\frac {\partial f} {\partial c}\right|$$, где $%[x,x_n]=\left\{v\in R^3\Bigr|v=\alpha x+(1-\alpha)x_n,\alpha\in[0,1] \right\}$% Отрезок берётся в некоторой малой окрестности икса.

ссылка

отвечен 1 Янв '13 19:24

изменен 1 Янв '13 19:30

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×134

задан
1 Янв '13 16:23

показан
1946 раз

обновлен
6 Янв '13 14:13

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru