lg(y^2-4y+14)+sin(xy)=0

задан 19 Апр '17 22:33

10|600 символов нужно символов осталось
1

Первое слагаемое не меньше 1, так как выражение под знаком логарифма равно $%(y-2)^2+10\ge10$%. Второе слагаемое не меньше $%-1$%. Суммарное значение 0 возможно только тогда, когда первое равно 1, а второе равно $%-1$%. Из первого имеем $%y=2$%. Из второго, с учётом первого, $%\sin2x=-1$%, то есть $%x=-\frac{\pi}4+\pi k$%, где $%k$% целое.

ссылка

отвечен 19 Апр '17 22:53

10|600 символов нужно символов осталось
1

Минимальное значение логарифма равно 1. Только таким может быть значение логарифма, ибо в противном случае уравнение не будет иметь решения, так как синус в этом случае не обнулит все выражение. Значит у=2, а sin(2*x)=-1. Отсюда можно найти х

ссылка

отвечен 19 Апр '17 22:54

2

Ну, как обычно, теперь 45 секунд

(19 Апр '17 22:55) epimkin

@epimkin: причём заметьте, что я вдобавок крайне медлителен, то есть очень медленно набираю тексты, и так далее :)

(19 Апр '17 23:07) falcao
1

@falcao, а у меня несколько сайтов открыто: изменял этому сайту с другим, вот и не успел

(19 Апр '17 23:12) epimkin

@epimkin: у меня других сайтов сейчас не открыто, но зато здесь открыто много окон (на данный момент их 4, но бывает и больше). Обычно я отвечаю в порядке степени "лёгкости".

(19 Апр '17 23:24) falcao

Спасибо за помощь)

(20 Апр '17 13:15) olechka
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×97

задан
19 Апр '17 22:33

показан
404 раза

обновлен
20 Апр '17 13:15

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru