Паша выбрал 2017 (не обязательно различных) натуральных чисел a1, a2, . . . , a2017 и играет сам с собой в следующую игру. Изначально у него есть неограниченный запас камней и 2017 больших пустых коробок. За один ход Паша добавляет в любую коробку (по своему выбору) a1 камней, в любую из оставшихся коробок (по своему выбору) — a2 камней, . . . , наконец, в оставшуюся коробку — a2017 камней. Пашина цель — добиться того, чтобы после некоторого хода во всех коробках стало поровну камней. Мог ли он выбрать числа так, чтобы цели можно было добиться за 43 хода, но нельзя — за меньшее ненулевое число ходов?

задан 20 Апр '17 21:03

1

Это задача с областного тура олимпиады, проходившей несколько месяцев назад. Все эти задачи с их авторскими решениями есть в открытом доступе. См. здесь задачу 10.3 на стр.11-12.

(20 Апр '17 21:16) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,297

задан
20 Апр '17 21:03

показан
394 раза

обновлен
20 Апр '17 21:16

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru