Для чего обратным функциям в т.ч. корню требуют определенность в виде одного значения? задан 26 Апр '17 11:32 Williams Wol... |
Для чего обратным функциям в т.ч. корню требуют определенность в виде одного значения? задан 26 Апр '17 11:32 Williams Wol... |
Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.
Присоединяйтесь!
отмечен:
задан
26 Апр '17 11:32
показан
218 раз
обновлен
26 Апр '17 12:22
Это все связано с операцией возведения в степень, что (-2)^2 = 4?
Функция должна быть однозначной -- только и всего. Многозначные функции рассматриваются в комплексном анализе, но они причиняют много неудобств. Там всё равно приходится выбирать их однозначные ветви, и так далее.
Помимо понятия обратной функции, есть понятие обратного соответствия. Вот оно устроено в точности так, как Вы говорите. То есть, если пара (x,y) принадлежит графику соответствия f (функции или нет), то пара (y,x) принадлежит графику соответствия f^{-1}. Но обратное соответствие уже не обязано быть функцией, то есть мы не вправе писать f^{-1}(y), имея в виду один конкретный элемент.