Является ли число 55 единственным числом Фибоначчи, представимым в виде суммы квадратов пяти последовательных целых чисел?

задан 26 Май '17 11:01

1

В 1964 году J.H.E.Cohn доказал ( https://math.la.asu.edu/~checkman/SquareFibonacci.html ), что единственными точными квадратами среди чисел Фибоначчи являются числа Фибоначчи 0, 1, 144.

Весьма вероятно, что и задача про числа Фибоначчи вида $%5n^2+10$% достаточно сложная.

(26 Май '17 12:26) EdwardTurJ
2

@EdwardTurJ: я тоже вспомнил про эту теорему Кона, но вдруг здесь есть какие-то "обходные" пути? Интересно было бы посмотреть, какие есть усиления предыдущей теоремы или "родственные" результаты. Или вдруг оно где-то есть в списке открытых вопросов?

(26 Май '17 16:41) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,399
×1,114
×370
×211
×41

задан
26 Май '17 11:01

показан
430 раз

обновлен
26 Май '17 16:41

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru