Условие: $% v(x,y)=e^x\cdot (\cos y-\sin y) $%

Вопрос такой:

1.не могу понять эта функция гармоническая или нет? у меня не гармоническая получается, но мне кажется, что я ошибаюсь! Может как-нибудь нужно ее преобразовать, а потом составлять уже уравнение Лапласа?

2.Может можно как-то в степенную функцию преобразовать и тогда будет проще?

задан 15 Июл '17 15:09

изменен 15 Июл '17 15:50

наконец нашел ошибку: получилась гармоническая ))

(15 Июл '17 15:43) Романенко

Из условия Коши-Римана: $%u'_x=v'_y$% т.е. $%u=-e^xy'(\cos y+\sin y)+ \phi(y)$% ?

(15 Июл '17 17:00) Романенко

а все ясно, там ошибка: нужно без $%y'$% и тогда все получается

(15 Июл '17 17:21) Романенко
1

@Романенко: то, что функция гармоническая, проверяется прямой подстановкой в оператор Лапласа. Никакого y' тут нет, поскольку это бывает лишь тогда, когда y=y(x) есть неявно заданная функция, и мы дифференцируем по x. Здесь же обе переменные независимы, поэтому частная производная y по x равна 0, а y по y -- равна 1.

(15 Июл '17 18:37) falcao

@falcao, точно, спасибо! )

(15 Июл '17 21:16) Романенко
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×159

задан
15 Июл '17 15:09

показан
251 раз

обновлен
15 Июл '17 21:16

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru