На учениях «Путь к миру–2017» по кругу расположены 2017 воронок, в одной из которых пря- чется враг. Артиллерия может залпом обстрелять некоторые (но не все) воронки, после чего враг переползает в следующую по часовой стрелке. При этом ни в какую воронку нельзя стрелять два- жды. Какое наименьшее число залпов нужно дать артиллеристам, чтобы гарантированно поразить врага? Не забудьте доказать, что оно наименьшее.

задан 4 Окт '17 17:42

10|600 символов нужно символов осталось
1

Занумеруем все воронки по часовой стрелке. Покажем, как поразить врага за 3 выстрела. Стреляем в ячейку номер 1. Если не поразили, то далее враг находится в какой-то ячейке кроме номера 2. Стреляем массово по целям от 3 до 2017. Если не поразили, то враг был в ячейке 1. Далее он гарантированно переползёт в номер 2, и туда стреляем третий раз.

Это число является наименьшим. Действительно, за один выстрел мы можем врага не поразить, так как хотя бы одна из ячеек остаётся необстрелянной. При этом найдётся необстрелянная ячейка, за которой по часовой стрелке идёт обстрелянная. Враг туда мог переползти, а вторым выстрелом туда стрелять нельзя. Значит, двух выстрелов тоже не хватит в общем случае.

ссылка

отвечен 4 Окт '17 22:50

1

Falcao, давайте в следующий раз мы будем Вам показывать заранее варианты нашей заочной олимпиады, а то в этом году Вы отрешали весь наш восьмой класс. Поглядите на список задач засланных onjbs

(22 Окт '17 10:46) knop

@knop: я обратил внимание на то, что у кого-то была целая серия хороших олимпиадных задач. Но в таких случаях никогда заранее не знаешь, что это. То ли уже прошедший тур, то ли нет. Проще всего в таких случаях вовремя предупреждать.

(22 Окт '17 14:39) falcao
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×3,704

задан
4 Окт '17 17:42

показан
908 раз

обновлен
22 Окт '17 14:39

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru