На окружности последовательно отмечены точки A1, A2, ..., A12. Сколько существует треугольников с вершинами в отмеченных точках, имеющих общие точки с прямой A1A5?

задан 7 Окт '17 21:17

Ну, я вижу такой вариант: 1. Когда все три точки лежат на A1-A5 2. Когда две точки лежат на A1-A5 3. Когда одна точка лежит на A1-A5 Т.е. $% C_{5}^{3}+C_{5}^{2} \cdot C_{7}^{1}+C_{5}^{1} \cdot C_{7}^{2} $%

(7 Окт '17 21:21) Williams Wol...

@Williams Wol...: прямая A1A5 может разрезать треугольник, то есть пересекать его по отрезку. Скажем, для A2A8A9. А из 12 вершин на этой прямой могут лежать максимум две.

(7 Окт '17 22:01) falcao
10|600 символов нужно символов осталось
0

Всего треугольников $%C_{12}^3=220$%. Те из них, которые не имеют общих точек с прямой, лежат в одной из открытых полуплоскостей с данной границей. Это значит, что вершинами будут 2, 3, 4 (один вариант), или 6, 7, ... , 12 (7 вариантов). Во втором случае получается $%C_7^5=35$% треугольников. Итого $%220-1-35=184$%.

ссылка

отвечен 7 Окт '17 21:29

А можете подсказать, в каком моменте у меня не учитывается вырожденный случай?

(7 Окт '17 21:35) Williams Wol...

А все, понял.

(7 Окт '17 21:36) Williams Wol...

Спасибо большое!

(7 Окт '17 22:05) olga5
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,301

задан
7 Окт '17 21:17

показан
1128 раз

обновлен
7 Окт '17 22:05

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru