задан 6 Янв '18 20:28 Стас001 |
задан 6 Янв '18 20:28 Стас001 |
Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.
Присоединяйтесь!
отмечен:
задан
6 Янв '18 20:28
показан
242 раза
обновлен
7 Янв '18 0:56
@Стас001: если полюс первого порядка в точке z0, то вычет так и находят: домножают на z-z0 и рассматривают предел. Множитель сокращается, потом подставляют z=z0, так как функция непрерывная. Минус уходит потому, что -1/i=i, и коэффициент при i даст искомую мнимую часть.
@falcao А чем отличается случай, когда применяем формулу "фи разделить на кси штрих"? Тоже ведь для полюса первого порядка.
@Стас001: это одно и то же. Если в знаменателе g(z), то g(z0)=0, и производная равна пределу (g(z)-0)/(z-z0). Это и значит, что мы знаменатель делим на z-z0, а потом подставляем z=z0 в то, что осталось. Когда z-z0 явно выделяется как множитель, на него и сокращаем. Это всё на уровне определений.
@falcao Точно, спасибо большое.