В строку выписано 39 чисел, не равных нулю. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? (Укажите все варианты и докажите, что других нет.)

Источник задачи: https://olympiads.mccme.ru/mmo/2018/var.pdf (8 класс, задача №2).

Мне кое-что непонятно. Для чего нужно уточнять, что нет чисел, равных нулю? Это лишнее условие. Каждое число, стоящее на нечётном месте, обязано быть отрицательным, поскольку остальные числа разбиваются на пары соседних с положительной суммой, а сумма всех отрицательна. Но тогда каждое число, стоящее на чётном месте, обязано быть положительным, иначе получится пара соседних с отрицательной суммой.

Ну а выяснив, что каждое число на нечётном месте отрицательно, а на чётном - положительно, решить задачу не составляет труда. Так как из 39 чисел у нас 19 положительных и 20 отрицательных, знаком произведения будет «плюс».

И всё-таки, зачем было писать, что чисел, равных нулю, нет, когда это напрямую следует из остального условия?

Пожалуйста, помогите разобраться.

задан 2 Окт 10:50

изменен 2 Окт 10:53

1

@Казвертеночка: у меня ответ возник сходу, так как я знаю, что задачи этой олимпиады составляются опытными людьми, которые всё учитывают. Тут дело в том, что соображение насчёт нулей возникает в процессе исследования общей ситуации типа -+-+...-. Всё равно к этому надо будет прийти, попутно заметив, что нулей нет. Но главное не в этом: если не добавить ограничение про нули, то у учеников (и не только у учеников) может возникнуть вопрос, а что такое "знак нуля"? Ведь если мы априори допускаем произведение 0 (ещё до рассуждения), то в условии должны это понятие определить. А это нежелательно.

(2 Окт 19:45) falcao

@falcao, большое спасибо! Ваши соображения всегда интересно читать.

(2 Окт 22:50) Казвертеночка

@Казвертеночка: здесь мог быть ещё один выход из положения. Типа: докажите, что среди чисел нет нулей, и определите знак произведения. Или можно "прямым текстом" попросить доказать положительность произведения. Но я не уверен, что это лучше.

(3 Окт 0:40) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×796
×201
×10
×7
×1

задан
2 Окт 10:50

показан
107 раз

обновлен
3 Окт 0:40

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru