Можно ли числа $%1, 2,\;\dots,\; 2018$% разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится четвёртая степень натурального числа?

задан 8 Дек '18 1:14

Ну вот, на соседнем форуме сегодня решили: https://dxdy.ru/topic131602.html

(19 Дек '18 12:30) Казвертеночка

@Казвертеночка: красивейшее решение! Особенно впечатлила группировка сомножителей, равных 12 и 27.

Я про эту задачу всё время помнил, много раз пытался её решать (это очень удобно делать "в уме", по дороге на работу). Чего только не перепробовал -- понятно было, что там нужно нечто "нерегулярное" сгруппировать, но мне удачный вариант так и не попался.

Хотел даже специально спросить, знает ли кто решение. Рад, что оно найдено.

(19 Дек '18 13:00) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,088
×41
×39
×25
×4

задан
8 Дек '18 1:14

показан
153 раза

обновлен
19 Дек '18 13:00

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru