alt text

Мне не совсем понятно (вернее, совсем непонятно), почему если предел бесконечен, то из расходимости интеграла от функции в числителе следует расходимость интеграла от функции в знаменателе. Разве не наоборот должно быть?

задан 1 Сен '19 16:49

Не наоборот. Просто распишите определение этого бесконечного предела, а далее примените признак сравнения в форме неравенств.

(1 Сен '19 17:57) caterpillar
1

По-моему, всё-таки наоборот (или надо в тексте поменять местами f и g). Случай c=0, когда f=o(g), и даже случай любого конечного c, когда f=O(g), влечёт, что из сходимости [g] следует сходимость [f]. По контрапозиции, это равносильно тому, что из расходимости [f] следует расходимость [g]. То есть эта фраза в строке 3 снизу не должна относиться к случаю бесконечного c.

(1 Сен '19 18:25) falcao

@falcao, большое спасибо!

(1 Сен '19 19:17) Пацнехенчик ...
1

А, да, наоборот, чего-то недосмотрел.

(1 Сен '19 19:27) caterpillar
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,404
×156
×12
×6
×2

задан
1 Сен '19 16:49

показан
378 раз

обновлен
1 Сен '19 19:27

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru