Дан треугольник ABC со сторонами AB= 16,AC= 5. Пусть I– точка пересечения его биссектрис. Найдите длину BC, если AI= 4.

задан 7 Окт 19:11

10|600 символов нужно символов осталось
2

Пусть $%\angle A = 2\phi$%, тогда $%BC = (16-4\cos\phi)+(5-4\cos\phi)$%... дальше пишите теорему косинусов и находите угол $%\phi$%...

ссылка

отвечен 7 Окт 20:10

У меня получилось BC=14.

(7 Окт 23:27) falcao

А у меня получилось BC = 21.

(7 Окт 23:37) FEBUS
1

Подтверждаю 14. Если 21, то половина угла А=90

(8 Окт 0:16) becouse

@FEBUS: 21=16+5, поэтому такой ответ невозможен.

(8 Окт 0:32) falcao

Конечно, 14. Арифметическая ошибка.

(8 Окт 1:11) FEBUS
10|600 символов нужно символов осталось
0

Можно так.

По тереме Ван-Обеля: $% \frac{AI}{IL}= \frac{4}{y} = \frac{AC+AB}{BC}=\frac{1}{x}.\;$% Откуда $% \;y=4x$%.

Рассмотрим пару материальных точек $%\; (C; 16)\;$% и $%\; (B; 5),\;$% их центр масс точка $%\;(L;21)$%.

Посчитаем момент инерции относительно точки $%A\;$% по теореме Гюйгенса — Штейнера: $%\;J_A=J_L+mAL^2$%.

Подставляем: $%\;16\times5^2+5 \times 16^2=16\times (5x)^2+5\times (16x)^2+21\times (4+4x)^2 $%.

После сокращений имеем $%\;3x^2+x-2=0.\;$% Откуда $%\;x=\frac{2}{3},\; \;BC=14$%.

alt text

ссылка

отвечен 9 Окт 13:50

изменен 9 Окт 17:02

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×2,720
×1,086

задан
7 Окт 19:11

показан
152 раза

обновлен
9 Окт 17:02

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru