Сколькими способами можно расставить шахматные фигуры(не считая пешек) на первой линии шахматной доски так, чтобы король и ферзь занимали бы клетки разных цветов и стояли бы между ладьями? задан 21 Сен '20 18:05 MsMe |
Число промежуточных клеток между ладьями может принимать значения m=2,3,4,5,6. Поставить две ладьи таким образом можно соответственно 5,4,3,2,1 способами. Если m=2k, то выбрать две клетки разных цветов из m можно k^2 способами. Если m=2k+1, то k(k+1) способами. Общая формула [m^2/4]. Значения таковы: 1, 2, 4, 6, 9. Первое число умножаем на 5, второе на 4, ... , последнее на 1, и складываем. Получается 46. С учётом того, что ферзь может идти левее или правее короля на двух выбранных клетках разных цветов, имеем ответ 92. отвечен 21 Сен '20 21:03 falcao Мне кажется, что вы не учли перестановки слонов и коней при переборе... Или я где то не прав?
(21 Сен '20 21:53)
MsMe
1
@MsMe: я рассматривал расстановку только четырёх фигур. Если расставляются все 8, то надо ответ домножить на 6 (число сочетаний из 4 по 2 -- при выборе мест для коней на оставшихся 4 местах). Условие должно быть более чётким, а то придётся учитывать случаи, когда мы расставляем только часть из 8 фигур. Или кто-то может расставить часть белых фигур и часть чёрных. Это всё явно не подразумевалось.
(21 Сен '20 22:02)
falcao
@falcao: Условие по мотивам шахмат Фишера.
(21 Сен '20 22:09)
EdwardTurJ
|