$%\begin{array}{l} {\text{Пусть }}\kappa \left( t \right) = \frac{{x'y'' - x''y'}}{{{{\left( {{{\left( {x'} \right)}^2} + {{\left( {y'} \right)}^2}} \right)}^{\frac{3}{2}}}}}{\text{ - кривизна регулярной кривой }}\gamma , \hfill \\ I = \int\limits_\gamma {\kappa \left( t \right)d\gamma } = \int\limits_a^b {\kappa \left( t \right)\sqrt {{{\left( {x'\left( t \right)} \right)}^2} + {{\left( {y'\left( t \right)} \right)}^2}} dt} , \hfill \\ {l_1}{\text{ - касательная к }}\gamma {\text{ при }}t = a,{\text{ }}{l_2}{\text{ - касательная к }}\gamma {\text{ при }}t = b. \hfill \\ {\text{Докажите}}{\text{, что }}\left| I \right|{\text{ равен углу между }}{l_1}{\text{ и }}{l_2}. \hfill \\ \end{array}$%

задан 19 Фев 23:59

изменен 20 Фев 4:22

1

Интеграл кривизны равен углу поворота вектора скорости, откуда всё и следует, т.е. это стандартный факт из учебника.

(21 Фев 5:20) caterpillar
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,309
×13
×2

задан
19 Фев 23:59

показан
49 раз

обновлен
21 Фев 5:20

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru