решить неравенство (Мехмат МГУ 2004г) (log[4, 2 - x] - log[6, 2 - x]) / (log[6, x] - log[9, x]) <= log[4, 9] задан 11 Фев '22 23:39 mikpolt |
решить неравенство (Мехмат МГУ 2004г) (log[4, 2 - x] - log[6, 2 - x]) / (log[6, x] - log[9, x]) <= log[4, 9] задан 11 Фев '22 23:39 mikpolt |
Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.
Присоединяйтесь!
отмечен:
задан
11 Фев '22 23:39
показан
239 раз
обновлен
12 Фев '22 0:13
Область определения 0 < x < 2, и знаменатель равен 0 при x=1, то есть это значение выпадает. Можно применить свойства логарифмов, после чего всё легко преобразуется, а можно рассмотреть два случая: 0 < x < 1 и 1 < x < 2. При этом видно, что числитель и знаменатель имеют разные знаки, поэтому неравенство выполнено всегда на (0;1)U(1;2).