y'=(3x+2y-1)/(x+1)

задан 4 Ноя '13 19:16

я сначала все поделила на x, затем попробовала заменой решить:y/x=u;y=xu;y'=x'u+u'x=u+u'x. правильно?)))

(5 Ноя '13 15:18) sasha001
10|600 символов нужно символов осталось
1

@sasha001, кажется, так у Вас не получится. Уравнение не является "сразу" однородным.. Из него можно сделать однородное - и свести к такой замене, как Вы пишете. Только надо сделать так, чтобы не было этих $%(-1)$% и $%1$% в числителе и в знаменателе дроби. Т.е. замена $%x_1 = x + 1$% (соответственно $%x = x_1 - 1$%), а в числителе тогда будет $%3(x-1) + 2y -1 = 3x + 2y -4 = 3x +2(y-2)$%, т.е. еще заменяете $%y_1 = y - 2$% (соответственно $%y = y_1 + 2$%). Так как в заменах только добавляли константы - то производная $%\frac{dy}{dx}$% никак не изменится ($%\frac{dy}{dx} = \frac{dy_1}{dx_1})$% ) , и уравнение "становится" однородным: $%\frac{dy_1}{dx_1} = \frac{3x_1 + 2y_1}{x_1}$% - это уже решается с помощью замены $%\frac{y_1}{x_1} = u$%
Посмотрите еще это ( здесь решалось уравнение вроде Вашего..) http://math.hashcode.ru/questions/19869/

ссылка

отвечен 5 Ноя '13 17:34

изменен 5 Ноя '13 17:37

10|600 символов нужно символов осталось
0

link text

Можно так

ссылка

отвечен 7 Ноя '13 16:18

спасибо)))

(7 Ноя '13 19:29) sasha001
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×3,706

задан
4 Ноя '13 19:16

показан
605 раз

обновлен
7 Ноя '13 19:29

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru