В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной AB=15. На продолжении диагонали CA за точку A выбрана точка H так, что AH=2CA. Отрезок SH=9 перпендикулярен плоскости основания пирамиды. Какой наибольший объем V может иметь цилиндр, расположенный внутри пирамиды так, что одно из его оснований лежит на основании пирамиды? В ответе укажите величину V/Пи.

задан 6 Янв '14 21:22

Способы решения обсуждались здесь; см. также ссылку, оставленную в комментариях.

(6 Янв '14 21:29) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×2,920

задан
6 Янв '14 21:22

показан
461 раз

обновлен
6 Янв '14 21:29

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru