0
1

Решить уравнение в натуральных числах:

xyz+xy+yz+xz+x+y+z=164

В ответе написать произведение xyz.

задан 18 Фев '14 15:51

10|600 символов нужно символов осталось
1

(x+1)(y+1)(z+1)=165=3х5х11 (произведение простых). Отсюда x, y, z -- это 2, 4, 10 в каком-то порядке. Произведение равно 80.

ссылка

отвечен 18 Фев '14 19:25

а исходя из чего получается, что (x+1)(y+1)(z+1)=165?

(21 Фев '14 11:57) Dromni86
1

Если в произведении (x+1)(y+1)(z+1) раскрыть скобки, то получится (xy+x+y+1)(z+1)=xyz+xy+xz+yz+x+y+z+1, то есть то, что находится в левой части уравнения, плюс 1.

(21 Фев '14 14:39) falcao
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×3,849

задан
18 Фев '14 15:51

показан
900 раз

обновлен
21 Фев '14 14:39

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru