Как решить уравнение теории множеств: $%(X/B)/C=B$%.

задан 22 Сен '14 18:33

изменен 23 Сен '14 11:15

%D0%92%D0%B8%D1%82%D0%B0%D0%BB%D0%B8%D0%BD%D0%B0's gravatar image


9917

Вроде нет решений.

(22 Сен '14 18:33) termit

Здесь пока нет самого условия задачи, то есть уравнения.

(22 Сен '14 18:34) falcao
10|600 символов нужно символов осталось
0

Уравнение несколько противоестественное, но его решения можно описать. Берётся некоторое множество $%X$%, потом из него вычитают то, что принадлежит $%B$%, и далее -- то, что принадлежит $%C$%. Получается $%B$%. Как может такое быть, если его только что вычли? Только в случае, если $%B$% пусто. Тогда задача сводится к тому, что из $%X$% вычли $%C$% и получили пустое множество. Это равносильно тому, что $%X\subseteq C$%.

Таким образом, при непустом $%B$% уравнение решений не имеет, а при пустом $%B$% множество решений описывается всеми подмножествами $%X$% множества $%C$%.

ссылка

отвечен 22 Сен '14 19:46

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×652

задан
22 Сен '14 18:33

показан
1444 раза

обновлен
22 Сен '14 19:46

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru