Из точки M, лежащей вне двух концентрических окружностей, проведены четыре прямые, касающиеся окружностей в точках A, B, C и D. Докажите, что точки M, A, B, C, D расположены на одной окружности.

задан 11 Окт '14 16:36

1

Если на диаметре MO построить окружность, то все точки A, B, C, D на ней окажутся по причине того, что углы MAO, MBO, ... прямые по свойству касательных.

(11 Окт '14 17:04) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×290

задан
11 Окт '14 16:36

показан
1588 раз

обновлен
11 Окт '14 17:04

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru