Даны прямая $%r=r_0+at$% и плоскость $%(r,n)=D$%, не параллельные между собой. Точка $%M$% лежит на прямой и удалена от плоскости на расстояние $%p$%. Найти радиус-вектор точки $%M$%.

задан 25 Окт '14 18:47

закрыт 16 Ноя '14 2:14

Если не составлять каких-то специальных формул векторной алгебры, то решить можно так. Берём известную формулу для расстояния от точки до плоскости, заданной уравнением. Если не путаю, она имеет вид $%\frac{|Ax+bY+Cz-D|}{\sqrt{A^2+B^2+C^2}}$%. Вместо координат подставляем выраженные через $%t$% координаты точки прямой из параметрического уравнения. Приравниваем расстояние к числу $%p$% и находим два значения $%t$%. Потом его подставляем в уравнение прямой и получаем радиус-вектор.

(25 Окт '14 20:52) falcao

@falcao, спасибо за решение! Я решила с помощью векторов, не раскладывая на координаты, но Ваш метод мне помог

(27 Окт '14 20:25) Uchenitsa
10|600 символов нужно символов осталось

Вопрос был закрыт. Причина - "Вопрос отвечен и ответ принят". Закрывший - Uchenitsa 16 Ноя '14 2:14

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,006
×141

задан
25 Окт '14 18:47

показан
2291 раз

обновлен
16 Ноя '14 2:14

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru