Из норки в полу одновременно выскочили 3 таракана и побежали в разные стороны вдоль прямых линий с равными постоянными скоростями. Пионер Вася обнаружил и раздавил их одного за другим, соответственно, через 1, 2 и 3 сек. после старта. А затем, с помощью построений попытался обнаружить норку. Сможете помочь пионеру? задан 27 Дек '11 16:34 BuilderC |
См Окружность Аполлония. Строим три окружности Аполлония для данных точек. Все пересекаются в одной или двух точках - возможных расположениях норы. отвечен 27 Дек '11 17:31 freopen Вот, что значит матобразование! Я даже не предполагал, что имеется общее решение, и решал когда-то и доказывал, что это окружность. Чистосердечно завидую.
(27 Дек '11 18:26)
BuilderC
Поэтому лучше из википедии: Окружность Аполлония
(27 Дек '11 18:27)
insolor
@BuilderC с другой стороны, более простое решение я пока не вижу. А окружность Аполлония задолбаешься строить циркулем и линейкой.
(27 Дек '11 18:30)
freopen
@freopen. Нет почему же. Если известно отношение тараканьих путей, то - запросто. Я даже не понимаю, о каких затруднениях Вы пишете. Поясню: соединим трупики односекундного и двухсекундного тараканов отрезком АВ. От А к В отложим отрезок АС = 1/3 АВ, а в противоположную сторону отложим отрезок АС1 = АВ. На отрезке СС1 как на диаметре строим окружность имени этого древнего грека. И все!
(27 Дек '11 18:34)
BuilderC
@BuilderC ну влом же три окружности так чертить. Хочется чего-то более оптимального.
(27 Дек '11 18:46)
freopen
показано 5 из 7
показать еще 2
|
Пол плоский? В смысле, тараканы убегали по плоскости?
Да! Плоский