Решить уравнение: $$\cos 6x + \sin (5x/2) = 2$$

задан 12 Фев '15 23:47

10|600 символов нужно символов осталось
1

Поскольку $%\cos6x \le1$% и $%\sin (5x/2) \le 1$%, то данное уравнение равносильно системе $$\cos6x =1$$ $$\sin (5x/2) = 1$$ $$x= \Pi + 4 \Pi n$$

ссылка

отвечен 12 Фев '15 23:51

изменен 12 Фев '15 23:53

@Роман83: БОльшая сложность в этом уравнении найти общие решения уравнений.

(12 Фев '15 23:54) EdwardTurJ
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×904
×578

задан
12 Фев '15 23:47

показан
619 раз

обновлен
12 Фев '15 23:54

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru