http://smages.com/images/.jpg

задан 14 Мар '15 16:47

изменен 20 Мар '15 16:15

10|600 символов нужно символов осталось
1

Угловой коэффициент прямой $%AB$% равен $%(0-(-3))/(4-2)=3/2$%. Точно такой же коэффициент имеет касательная к кривой $%y=x^{3/2}+p$% в точке $%x=1$%, так как $%y'(x)=\frac32\sqrt{x}$% независимо от значения $%p$%. Поэтому ближайшая к графику точка прямой $%AB$% будет проекцией на эту прямую точки графика $%P(1;1+p)$%.

Наименьшему значению параметра $%p$%, при котором проекция точки попадает на отрезок $%AB$%, будет такое, для которого проекция попадает в точку отрезка с наименьшей ординатой, то есть в $%A$%. При этом вектор $%\vec{PA}$% с координатами $%(-1;p+4)$% должен быть перпендикулярен вектору $%\vec{AB}$% с координатами $%(2;3)$%. Рассматриваем скалярное произведение и приравниваем к нулю, откуда $%p_0=-\frac{10}3$%.

ссылка

отвечен 14 Мар '15 21:34

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×3,127
×2,595
×1,612
×737

задан
14 Мар '15 16:47

показан
576 раз

обновлен
20 Мар '15 16:15

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru