Найти объем тела, ограниченного поверхностями $%x^2 + y^2 = ax$%, $%|x| = |z|$%.

задан 2 Май '15 14:27

изменен 2 Май '15 20:43

%D0%92%D0%B8%D1%82%D0%B0%D0%BB%D0%B8%D0%BD%D0%B0's gravatar image


9917

Тело ограничено круговым цилиндром (первое уравнение) и двумя плоскостями: z=x (сверху) и z=-x снизу. Если тройной интеграл свести к повторным, то получится интеграл по кругу $%(x-a/2)^2+y^2=(a/2)^2$% от функции 2x. Его можно найти, например, с использованием перехода к полярным координатам.

(2 Май '15 15:59) falcao
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×2,589

задан
2 Май '15 14:27

показан
441 раз

обновлен
2 Май '15 15:59

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru