Помогите решит задачу

Начну с примера.

Простое скользящее среднее:

p - цена

n - период SMA

t - время

$$SMA(t,n)=\frac{p(t-(n-1))+ p(t-(n-2))+ ... + p(t-1)+p(t)}{n}$$

частный случай:

n1=5

t=5

$$SMA(5,5)=\frac{p(1)+p(2)+p(3)+p(4)+p(5)}{5}$$

t=6

$$SMA(6,5)=\frac{p(2)+p(3)+p(4)+p(5)+p(6)}{5}$$

t=7 $$SMA(7,5)=\frac{p(3)+p(4)+p(5)+p(6)+p(7)}{5}$$

далее начиная с t=8 период SMA увеличивается на 1:

n2=n1+1=5+1=6 - новый период SMA

$$SMA(8,6)=\frac{p(3)+p(4)+p(5)+p(6)+p(7)+p(8)}{6}$$

теперь необходимо выразить SMA(8,6) с периодом n2=6 через SMA(7,5) с периодом n1=5:

$$SMA(8,6)=\frac{p(3)+p(4)+p(5)+p(6)+p(7)+p(8)}{6}=$$

$$=\frac{5 \ast \frac{p(3)+p(4)+p(5)+p(6)+p(7)}{5}+p(8)}{6}=$$

$$=\frac{5 \ast SMA(7,5)+p(8)}{6}$$

В чем смысл такого преобразования - экономия времени вычисления следующего значения SMA.


Теперь собственно задача.

Экспоненциально взвешенное скользящее среднее:

p - цена

n - период EMA

t - время

EMA(0,n)=0

$$EMA(t,n)=\frac{(n-1) \ast EMA(t-1,n)+2 \ast p(t)}{n+1}$$

частный случай: n1=5

t=1

$$EMA(1,5)=\frac{(5-1) \ast EMA(1-1,5)+2 \ast p(1)}{5+1}=$$

$$=\frac{(5-1) \ast EMA(0,5)+2 \ast p(1)}{5+1}=$$

$$=\frac{(5-1) \ast 0+2 \ast p(1)}{5+1}=$$

$$=2 \ast \frac{p(1)}{(5+1)^{1}}$$

t=2

$$EMA(2,5)=\frac{(5-1) \ast EMA(2-1,5)+2 \ast p(2)}{5+1}=$$

$$=\frac{(5-1) \ast EMA(1,5)+2 \ast p(2)}{5+1}=$$

$$=\frac{(5-1) \ast \frac{2 \ast p(1)}{(5+1)^{1}}+2 \ast p(2)}{5+1}=$$

$$=2 \ast \frac{(5-1)^{1} \ast p(1) + (5+1)^{1} \ast p(2)}{(5+1)^{2}}$$

t=3

$$EMA(3,5)=\frac{(5-1) \ast EMA(3-1,5)+2 \ast p(3)}{5+1}=$$

$$=\frac{(5-1) \ast EMA(2,5)+2 \ast p(3)}{5+1}=$$

$$=\frac{(5-1) \ast 2 \ast \frac{(5-1)^{1} \ast p(1) + (5+1)^{1} \ast p(2)}{(5+1)^{2}}+2 \ast p(3)}{5+1}=$$

$$=2 \ast \frac{(5-1)^{2} \ast p(1) + (5-1)^{1} \ast (5+1)^{1} \ast p(2) + (5+1)^{2} \ast p(3)}{(5+1)^{3}}$$

t=4

$$EMA(4,5)=\frac{(5-1) \ast EMA(4-1,5)+2 \ast p(4)}{5+1}=$$

$$=\frac{(5-1) \ast EMA(3,5)+2 \ast p(4)}{5+1}=$$

$$=\frac{(5-1) \ast 2 \ast \frac{(5-1)^{2} \ast p(1) + (5-1)^{1} \ast (5+1)^{1} \ast p(2) + (5+1)^{2} \ast p(3)}{(5+1)^{3}}+2 \ast p(4)}{5+1}=$$

$$=2 \ast \frac{(5-1)^{3} \ast p(1) + (5-1)^{2} \ast (5+1)^{1} \ast p(2) + (5-1)^{1} \ast (5+1)^{2} \ast p(3) + (5+1)^{3} \ast p(4)}{(5+1)^{4}}$$

далее начиная с t=5 период EMA увеличивается на 1:

n2=n1+1=5+1=6 - новый период EMA

$$EMA(5,6)=2 \ast \frac{(6-1)^{4} \ast p(1) + (6-1)^{3} \ast (6+1)^{1} \ast p(2) + (6-1)^{2} \ast (6+1)^{2} \ast p(3) + (6-1)^{1} \ast (6+1)^{3} \ast p(4) + (6+1)^{4} \ast p(5)}{(6+1)^{5}}$$

Как можно аналогично выразить EMA(5,6) с периом n2=6 через EMA(4,5) с периом n1=5 ? Хотя бы идеи какие-нибудь.... что можно с этим сделать? Заранее всем спасибо!

задан 8 Май '15 22:54

изменен 9 Май '15 18:46

А это всё можно сформулировать в общематематических терминах, а также написать формулы понятно и "читабельно"?

(8 Май '15 22:58) falcao

Якак смог сейчас подправил. Извиняюсь сразу за такую запись....

(8 Май '15 23:00) 4ernovanton

Так лучше?

(8 Май '15 23:01) 4ernovanton

@4ernovanton: нет, дроби так не набирают. Посмотрите инструкцию по $%\TeX$%'у, или воспользуйтесь редактором формул.

Пересказать содержание задачи в общематематических терминах можно? На таком уровне, чтобы оно было понятно, скажем, студенту вуза, знакомого со стандартным курсом теории вероятностей.

(9 Май '15 1:52) falcao

@4ernovanton: насколько я понял, суть задачи здесь чисто арифметическая. Имеется последовательность чисел p(1), p(2), ... ; что они означают, не важно. Далее рассматриваются средние величины. Предлагаю ввести такое обозначение: $%a(m,n)=\frac{p(m)+\cdots+p(n)}{n-(m-1)}$%. Например: $%\frac{p(3)+p(4)+p(5)+p(6)+p(7)}5$% кратко обозначаем через $%a(3,7)$%. Предлагаю сформулировать задачу в таком виде: даны такие-то числа вида $%a(m,n)$%; требуется выразить через них как можно проще числа такие-то. В этой форме будет понятнее.

(9 Май '15 3:08) falcao

@4ernovanton, Пользуйтесь, пожалуйста, редактором формул.

(9 Май '15 11:22) Виталина

Вот исправил и больше расписал задачу.... Думаю сейчас понятнее получилось.....

(9 Май '15 18:50) 4ernovanton
показано 5 из 7 показать еще 2
10|600 символов нужно символов осталось
Знаете, кто может ответить? Поделитесь вопросом в Twitter или ВКонтакте.

Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×496

задан
8 Май '15 22:54

показан
244 раза

обновлен
9 Май '15 18:50

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru