Выписать подгруппу групы S5 с данными образующими элементами. Образующие элементы: (12345) общая скобка (23145)

(12345) общая скобка (42315)

задан 5 Июн '15 0:21

Что значит "общая скобка"? Это два разных элемента, или их произведение, или что-то ещё?

(5 Июн '15 0:25) falcao

Это выглядит вот так 12345 23145 Это всепод одной скобкой

(5 Июн '15 0:42) qwertydmitr

Как матрица записана

(5 Июн '15 0:42) qwertydmitr

И вторая тоже 12345 42315

(5 Июн '15 0:42) qwertydmitr

@qwertydmitr: я понял -- элементы заданы в виде подстановок.

(5 Июн '15 1:29) falcao

@qwertydmitr, Если вам дан исчерпывающий ответ, отметьте его как верный (нажмите на галку рядом с выбранным ответом).

(5 Июн '15 9:20) Виталина
показано 5 из 6 показать еще 1
10|600 символов нужно символов осталось
0

Представим обе подстановки в виде произведения независимых циклов: $%a=(123)$%, $%b=(14)$%. Элемент 5 неподвижен, поэтому подгруппа, порождённая $%a$% и $%b$%, содержится в $%S_4$%. Разными способами можно показать, что она совпадает с $%S_4$%. Например, можно перемножить элементы: $%ab=(1234)$%, и далее воспользоваться известным фактом, что цикл $%(12\ldots n)$% и транспозиция $%(12)$% порождают $%S_n$%.

Если не пользоваться этим фактом, можно заметить, что подгруппа содержит элементы порядка 3 и 4, поэтому её порядок делится на 12. Если допустить, что она имеет порядок 12, то в $%S_4$% она имеет индекс 2 и является поэтому нормальной. Факторгруппа по ней абелева, то есть подгруппа содержит коммутант, а он равен знакопеременной подгруппе $%A_4$%. Но наша подгруппа содержит нечётные подстановки, и не может совпадать с $%A_4$%. Тем самым, она имеет порядок 24 и совпадает с $%S_4$%.

На худой конец, все элементы подгруппы можно указать явно, построив граф Кэли.

ссылка

отвечен 5 Июн '15 1:38

$%S_5$%, а не $%S_4$%.

(5 Июн '15 1:45) qwertydmitr

@qwertydmitr: я понимаю, что $%S_5$%, но символ 5 неподвижен при обоих преобразованиях. Поэтому подгруппа содержится в $%S_4$%.

(5 Июн '15 1:52) falcao
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,070

задан
5 Июн '15 0:21

показан
286 раз

обновлен
5 Июн '15 9:20

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru