Решите в натуральных числах уравнение: a!+b!+c!=d!

задан 13 Ноя '15 16:40

10|600 символов нужно символов осталось
1

Пусть $%a\le b\le c$%. Ясно, что $%d > c$%, поэтому $%d!\ge(c+1)!$%. С другой стороны, $%d!\le3c!$%. Это значит, что $%c\le2$%. Тогда факториалами в левой части могут быть только 1 или 2. Их сумма больше 2 и не больше 6, и в сумме факториалом может быть только 6. Значит, $%a=b=c=2$%, $%d=3$%.

ссылка

отвечен 13 Ноя '15 16:54

10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×4,128
×1,143
×958
×140

задан
13 Ноя '15 16:40

показан
1195 раз

обновлен
13 Ноя '15 16:54

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru