В линейном вещественном пространстве R n×n вещественных квадратных матриц порядка n (n ≥ 2) задана функция F(X, Y ) = trXtrY . Определить, может ли заданная функция служить скалярным произведением, а в случае, если не может – указать, какие из свойств евклидова скалярного умножения не выполняются.

задан 6 Май '16 10:57

10|600 символов нужно символов осталось
1

Свойства и линейности симметричности очевидно выполнены... неотрицательность $%F(X;X)$% выполнена... а вот $%F(X;X)=0\;\Leftrightarrow\;X=0$% нарушается...

ссылка

отвечен 6 Май '16 11:07

изменен 6 Май '16 14:29

Это ведь след матрицы, то есть сумма диагональных элементов

(6 Май '16 13:58) fasegfaxs

@lugo: да, именно так. Но суть в том, что ненулевая матрица может иметь нулевой след, поэтому это не скалярное произведение.

(6 Май '16 14:12) falcao

@lugo, Это ведь след матрицы, то есть сумма диагональных элементов - мдя... ((( ... что-то у меня сегодня разыгралось воображение... пошёл исправляться...

(6 Май '16 14:28) all_exist

@all_exist: а разве что-то в Вашем решении было не так?

(6 Май '16 17:26) falcao

@falcao, было ошибочное предположение о способе вычислении функции... (((

(7 Май '16 0:41) all_exist
10|600 символов нужно символов осталось
Ваш ответ

Если вы не нашли ответ, задайте вопрос.

Здравствуйте

Математика - это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

отмечен:

×1,562
×185

задан
6 Май '16 10:57

показан
1677 раз

обновлен
7 Май '16 0:42

Связанные исследования

Связанные вопросы

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru