0
голосов
0
ответов
34 показа

1
голос
1
ответ
31 показ

0
голосов
0
ответов
76 показов

Найдите разложение Жордана для заряда, построенного по функции:$$F(x)=\begin{cases} \text{arcctg}\; x & \text{при} & x \leq -1, \\ 1 & \t ...
1
голос
0
ответов
91 показ

1-(x^2/2)+(x^4/48)-(x^6/7680).......(-1)^n(x^2n/?). Не могу заменить ничем вопросительный знак. Подскажите, пожалуйста.
0
голосов
0
ответов
68 показов

1) Существует ли такая функция $%f_q\colon\mathbb{R}\to\mathbb{R}$%, что $%f_q$% дифференцируема во всех рациональных точках ровно один раз, а во всех ...
0
голосов
0
ответов
122 показа

Доказать сигма-аддитивность плоской меры Лебега на полукольце:$$\{[a, b)×[c, d) \: |\: a, b, c, d ∈ R\}$$
0
голосов
0
ответов
110 показов

Вычислить интеграл Лебега ([t] — целая часть t):$$\int_{[0\times2][0\times3]} [x-y]dµ_L(x,y)$$
0
голосов
1
ответ
143 показа

Найти меру Лебега множества тех точек отрезка [0, 1], в десятичном разложении которых первая единица окружена нулями (рассматриваем только цифры после ...
0
голосов
1
ответ
193 показа

Можно ли построить в замкнутом параллелепипеде $% P ⊂ R_n$%замкнутое собственное подмножество, мера Лебега которого равна мере параллелепипеда?
0
голосов
1
ответ
203 показа

Сходится ли на R последовательность :$$f_n(x)=\frac{sin^n x}{x}$$а) почти всюду б) по мере Лебега
0
голосов
1
ответ
214 показов

Показать, что множество $%A ⊂ R^2$% является борелевым и найти его меру Лебега:$$A= \{ (x,y) ~ | ~ 0<=y<=\frac{1}{a^2 + x^2}\}$$
0
голосов
1
ответ
131 показ

Доказать по определению предела, что lim при x стремящемся к бесконечности (5x+4)/(1-3x)=-5/3.Моё решение:Привожу (5x+4)/(1-3х)+5/3 к виду 17/(3-9х)Пр ...
0
голосов
1
ответ
144 показа

Доказать, что во всяком измеримом числовом множестве положительной меры найдется неизмеримое подмножество.
1
голос
1
ответ
223 показа

Пусть мера Лебега-Стилтьеса $%\mu_F$% задается функцией $% F(x) = arctg(x)+[\frac{3arctg(x)}{\pi}]\ $% ([y]-целая часть y, переопределенная в целых то ...
0
голосов
0
ответов
118 показов

Вычислить интеграл Лебега ( $$η_{(x)} = Χ_{(0, +\infty)}(x)$$ - функция Хэйвисайда)$$\\∫_{-\infty}^{\infty} x^2e^{-x^2} dμ_F(x)$$F(x) = x + 3η(x - 2) ...
на странице153050
Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru