0
голосов
0
ответов
40 показов

Имеется числовая последовательность $%a_n$% ($%n\ge1)$%, для которой верно следующее: $% a_{1} \in (0; 1) $%; $% a_{n+1} = a_{n}^{2} $% или $% a_{n+1} ...
0
голосов
0
ответов
87 показов

Дана ограниченная последовательность $% x_{n} $%, удовлетворяющая условию $% x_{n + 2} \leq \frac{x_{n + 1} + x_{n}}{2} $%. Доказать, что последовател ...
2
голоса
2
ответа
63 показа

Как доказать, что если существует предел $$\lim_{x \rightarrow \infty} (a_{n+1}-\frac{a_n}{2} )= 0$$то существует и предел$$\lim_{x \rightarrow \infty ...
0
голосов
1
ответ
44 показа

Пусть $%x_{n+1}=\sqrt{x_n + 2}$%. Доказать, что $%lim_{n \rightarrow \infty }x_n=2 \ \forall x_0\geq -2$%
1
голос
0
ответов
111 показов

Последовательность {$%{a_n}$%} такова, что $%0 < a_n <1$%, и кроме того: $%a_{n+1}<(a_n+a_{n-1})/2$%. Верно ли, что {$%{a_n}$%} сходится? Най ...
0
голосов
0
ответов
53 показа

Предположим есть какая-то числовая последовательность, которая задана формулой. Т.е. мы можем вычислить все элементы этой последовательности начиная с ...
0
голосов
0
ответов
84 показа

Здравствуйте! Задача такая.Найдите формулу общего члена последовательности, заданной рекуррентным соотношением: Xn+2 = 3Xn+1 – 2Xn; x0 = 3, x1 = 2.
2
голоса
1
ответ
101 показ

Пусть $%2008$% чисел удовлетворяют условия: $%|x_1|=999$% и для всех натуральных $%n$% от $%2$% до $%2008$% $$|x_n|=|x_{n-1}+1|$$Определить наименьшее ...
1
голос
0
ответов
94 показа

Последовательность $$0,\; 1,\; 3,\; 7,\; 15,\; 29,\; 55,\;\dots$$ задана формулой $%a_0=0,\; a_1=1,\; a_n=a_{n-2}+a_{n-1}+p_{n-1}$%, где $%p_k$% - про ...
0
голосов
0
ответов
75 показов

Последовательность положительных чисел {Xn} удовлетворяет неравенству Xn ^2 < Xn − Xn+1 при всех n > 1 . Докажите, что Xn < 1/n.
0
голосов
1
ответ
92 показа

Последовательность заданна рекуррентными соотношением$%b_0=1$%$%b_1C_2^1+b_0C_2^0=0$%$%b_2C_3^2+b_1C_3^1+b_0C_3^0=0$%$%b_3C_4^3+b_2C_4^2+b_1C_4^1+b_0C ...
1
голос
0
ответов
73 показа

Доказать, что последовательность $%(x_n)_{n\in \mathbb{N}}$%$$ x_{0}=b $$$$ x_{n+1}= x^2_{n} - (2a-1)x_{n} + a^2 $$сходится тогда и только тогда, когд ...
0
голосов
0
ответов
130 показов

В бесконечной последовательности натуральных чисел произведение любых пятнадцати последовательных членов равно миллиону, а сумма любых десяти последов ...
0
голосов
0
ответов
92 показа

Используя критерий Коши, докажите, что последовательнось $%x_n=\sum\limits_{k=1}^n \frac{\arctan(k)}{k + 10}$% расходится.
на странице153050
Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru