4
голоса
1
ответ
57 показов

Сумма всех простых чисел, на которые делится натуральное число $%k$%, равна 11.Доказать, что сумма цифр числа $%k$% (в десятичной записи) не равна 11. ...
1
голос
1
ответ
78 показов

Сумма цифр факториала числа $%n>1$% в позиционной системе счисления с основанием $%n$% для первых 15 значений $%n$% (с 2 по 16) выглядит так:1 2 3 ...
2
голоса
1
ответ
144 показа

Может ли число, сумма цифр которого равна 17, делиться нацело на число, сумма цифр которого равна 16?
на странице153050
Дизайн сайта/логотип © «Сеть Знаний». Контент распространяется под лицензией cc by-sa 3.0 с обязательным указанием авторства.
Рейтинг@Mail.ru